
Chad Standard

Draft 1, 2024, July 18th

1 Preface

A standard is meant to define a set of rules and guidelines,
simply put, this document does that in a shorthand fash-
ion. For any self-respecting project, the rulings here should
lead to a decently readable codebase with a strong consis-
tency. Above the standard there is only one rule: the Rule
Of Consistency, prefer being self-consistence to any strict
compliance.

Authors Written by Emil Williams, and was designed by an
Anonymous contributor and Ognjen M. Robovic. The au-
thors of this text democratically came to these outcomes
over rational discussion with full agreement on each point.

This Document Being designed with only the C Programming
Language in mind. Rulings should not apply to other lan-
guages. This document was invented by the means of LATEX
and by no other means could it possibly have been made.

1



2 Standard

1. Line Width 72 or higher (ex. 80, 120, 240, etc.)

2. NULL Terminator In String Literal Always use: \00 → \0
3. Hexadecimal Literals In String Literal 2 digit hexadecimal values: \xDE\xAD

4. String Literal NULL Terminator Breaks
”text\0” ”more text\0”
NULLs should be grouped: ”\0\0”
Given that your creating an explicit String Literal containing many cstrings, individ-
ual NULLs may be given their own group.

5. C99 Leading Commas In enums or compound literals, leave a leading comma. If
you’re writing for C89, then you should never use Leading Commas.

6. Do Not Use union or struct In Declarations A union or struct may be stated
such that variable a of struct type b would be declared as struct b a rather than b
a.

7. C99 Compound Literals If you explicitly set some item in the structure or union,
you must do this for all other items in the structure.

typedef struct {

int a, b;

} type;

type a = {

.a = 1,

.b = 2,

};

8. No Relative Header Paths Do not use relative pathing in headers, instead use
compiler flags or full paths to enable your compilation.

9. Define At End Header Guard
Use this kind of header guard:

#if HEADER_H

...

#define HEADER_H

#endif

10. Namespacing For Externally Exposed Headers & Variables Add a namespace
suffix for headers & variables meant to be used outside your project.

11. Acceptable Naming Names should be of one format and only one format internally.
The endorsed naming style is snake case, snake case for all.

12. Use Tabs And Spaces Effective use of both tabs and spaces aids in code density
and universal styling regardless of tabwidth.

13. Parenthesize All Macro Definitions This is to insure precedent is maintained such
that macros will be computed to one value.

14. Include Padding After Commas Do, This, In a list, so you can, separate things
better, visually. rather,than,this,pile,of,nonsense.

2



15. extern All Function Declarations Visually signifies your declarations.

extern int func (int a, int b);

16. Padding For All Functions, Declarations, and Math should all have padding after
their respective incantation, and before if and when applicable.

int func (int a, int b) {

int c = a * b + 1;

return a + b + c;

}

func (2, 5);

17. Center Pointer Declaration

void * pointer;

even for typecasting

(int *) malloc (sizeof (int));

18. Sparse Pointers Types

void * * double_pointer;

void * * * triple_pointer;

void * single_pointer;

19. Always Specify malloc This Way

type a variable = (type a) malloc (sizeof (type b) * number of items);

20. Single Line Parameters Function parameters should remain on the same line. If a
function has way too many parameters (line length greater than limit), format them
into a block such that they are placed after the initial open parentheses.

21. Alignment Of Variable Names Align adjacent declarations horizontally.

22. Alignment Of Assignments Align adjacent assignments horizontally.

23. always typedef enum, struct, and union constructs

24. Anonymous Structures You may use these if you wish to.

25. Always Bracket With the only exception being else if . This includes switch
statement case bodies.

26. Full body switch Format Bodies may be either Multi-line or single line, but the
body must be put inside braces.

switch (...) {

case ...: {

break;

}

}

Cases do not need to have break statements, and do not have any restriction or
suggestion on control flow.

27. Left Handed if Format

3



if (!a

&& b) {

...

}

28. Reduce if Format Avoid Pointless Comparisons

if (a)

instead of:

if (a != 0)

29. Preferred Iterators i, j, k, ...

30. Preferred Iterator while(1) Decide on whether you should obey this based on your
compiler, if this is not equivalent to for(; ; ) then use that instead.

31. Prefer Prefix Decrement −−x Increment ++x If you must use the de/increment
operator, then use Prefix Increment unless you can justify use of Suffix Increment.

32. Use Preprocessor Comments To Comment Out Code
They’re actually recursive:

33. C99 Style Declarations For Loop Iterators Including the declaration is acceptable
if there’s no other use of the iterator, otherwise the declaration should be in the
scope above.

34. Parentheses For Absolutely Everything

return (1);

#if 0

...

#endif // 0

4



3 Project Advice

These are just some suggestions that are per-project and are not to be
followed word to word. Pick your poison and deception.

1. Provide Makefile It’s generally universal in the Unix world.

2. Provide @BAKE compilation header For small projects :)
https://github.com/emilwilliams/bake

3. Cure, Sanitize, Analyze
Make sure to clear compiler warnings, such as those generated
by gcc(1) and clang(1) under −Wall −Wextra −Wpedantic;
runtime issues found by sanitation tools such as −fsanitize =
address, undefined, bounds or valgrind(1); and static analysis
tool such as split(1)

If you fail to preform these acts, the man of two dashes will be
displeased, and you will lose 88% of your maximum health for
2d144 turns.

4. You Don’t Need More Than A Triple Pointer It’s rather
excessive.

5. You Don’t Need More Than Three Iterators It’s rather ex-
cessive, unless your implementing an algorithm or larger system
that needs it, even then it may be more reasonable to isolate these
systems and then static inline them.

6. You Don’t Need More Than 4 Levels Of Indentation You
should put that inside a function!

7. Don’t You Dare Use C Style Comments, Emil! C Style Com-
ments are not justified unless you absolutely need them, C++ Style
Comments in all normal cases are useful for logical separation and
denser comments. C Style Comments are for larger explanations,
NOT for commenting out blocks of code!

8. Use C Style Comments Always And Vanquish C++ Demons
From Your Code, Anon! Given that you hate C++ (obviously),
you can vanish them by using C Style Comments always because
you don’t know how to make Emacs not do that by default, and
you don’t feel like fixing it or learning to type //.

9. Use POSIX Reserved t Suffix For New Types

5


