Browse Source

sdc: support 24-bit addressing

Needed if we want to compile the kernel and zasm from within a SD card.
I didn't go straight for 32-bit because it was significantly more
complex and 24-bit give us 16M. Enough to go on for a while...
pull/10/head
Virgil Dupras 5 years ago
parent
commit
92a04f4627
5 changed files with 112 additions and 65 deletions
  1. +10
    -2
      apps/sdct/main.asm
  2. +79
    -58
      kernel/sdc.asm
  3. +17
    -1
      recipes/rc2014/zasm/Makefile
  4. +4
    -3
      recipes/rc2014/zasm/glue.asm
  5. +2
    -1
      recipes/rc2014/zasm/user.h

+ 10
- 2
apps/sdct/main.asm View File

@@ -5,7 +5,12 @@ sdctMain:
ld de, SDCT_RAMSTART
.wLoop:
ld a, (de)
call sdcPutC
; To avoid overwriting important data and to test the 24-bit addressing,
; we set DE to 12 instead of zero
push de ; <|
ld de, 12 ; |
call sdcPutC ; |
pop de ; <|
jr nz, .error
inc hl
inc de
@@ -23,7 +28,10 @@ sdctMain:
ld hl, 0
ld de, SDCT_RAMSTART
.rLoop:
call sdcGetC
push de ; <|
ld de, 12 ; |
call sdcGetC ; |
pop de ; <|
jr nz, .error
ex de, hl
cp (hl)


+ 79
- 58
kernel/sdc.asm View File

@@ -59,16 +59,16 @@
; This is a pointer to the currently selected buffer. This points to the BUFSEC
; part, that is, two bytes before actual content begins.
.equ SDC_BUFPTR SDC_RAMSTART
; Sector number currently in SDC_BUF1.
; Sector number currently in SDC_BUF1. Little endian like any other z80 word.
.equ SDC_BUFSEC1 SDC_BUFPTR+2
; Whether the buffer has been written to. 0 means clean. 1 means dirty.
.equ SDC_BUFDIRTY1 SDC_BUFSEC1+1
.equ SDC_BUFDIRTY1 SDC_BUFSEC1+2
; The contents of the buffer.
.equ SDC_BUF1 SDC_BUFDIRTY1+1

; second buffer has the same structure as the first.
.equ SDC_BUFSEC2 SDC_BUF1+SDC_BLKSIZE
.equ SDC_BUFDIRTY2 SDC_BUFSEC2+1
.equ SDC_BUFDIRTY2 SDC_BUFSEC2+2
.equ SDC_BUF2 SDC_BUFDIRTY2+1
.equ SDC_RAMEND SDC_BUF2+SDC_BLKSIZE

@@ -301,21 +301,18 @@ sdcSetBlkSize:
pop hl
ret

; Read block index specified in A and place the contents in buffer pointed to
; Read block index specified in DE and place the contents in buffer pointed to
; by (SDC_BUFPTR).
; Doesn't check CRC. If the operation is a success, updates buffer's sector to
; the value of A.
; the value of DE.
; Returns 0 in A if success, non-zero if error.
sdcReadBlk:
push bc
push de
push hl

out (SDC_PORT_CSLOW), a
ld hl, 0 ; read single block at addr A
ld d, 0
ld e, a ; E isn't touched in the rest of the routine
; and holds onto our original A
ld hl, 0
; DE already has the correct value
ld a, 0b01010001 ; CMD17
call sdcCmd
or a ; cp 0
@@ -341,7 +338,10 @@ sdcReadBlk:
; actual data, but at this point, we don't have any error conditions
; left, success is guaranteed. To avoid needlesssly INCing hl, let's
; set sector and dirty along the way
ld a, e ; sector number
ld a, e ; sector number LSB
ld (hl), a
inc hl ; sector number MSB
ld a, d
ld (hl), a
inc hl ; dirty flag
xor a ; unset
@@ -368,7 +368,6 @@ sdcReadBlk:
.end:
out (SDC_PORT_CSHIGH), a
pop hl
pop de
pop bc
ret

@@ -377,7 +376,8 @@ sdcReadBlk:
; A returns 0 in A on success (with Z set), non-zero (with Z unset) on error.
sdcWriteBlk:
push hl
ld hl, (SDC_BUFPTR) ; HL points to sector
ld hl, (SDC_BUFPTR) ; HL points to sector LSB
inc hl ; sector MSB
inc hl ; now to dirty flag
xor a
cp (hl)
@@ -389,11 +389,13 @@ sdcWriteBlk:
push de

out (SDC_PORT_CSLOW), a
dec hl ; sector
dec hl ; sector MSB
ld a, (hl)
ld d, a
dec hl ; sector LSB
ld a, (hl)
ld hl, 0 ; write single block at addr A
ld d, 0
ld e, a
ld hl, 0 ; high addr word always zero, DE already set
ld a, 0b01011000 ; CMD24
call sdcCmd
or a ; cp 0
@@ -411,6 +413,7 @@ sdcWriteBlk:
; Sending our data token!
ld bc, SDC_BLKSIZE
ld hl, (SDC_BUFPTR)
inc hl ; sector MSB
inc hl ; dirty flag
inc hl ; beginning of contents

@@ -434,6 +437,7 @@ sdcWriteBlk:
call sdcWaitResp
; Success! Now let's unset the dirty flag
ld hl, (SDC_BUFPTR)
inc hl ; sector MSB
inc hl ; dirty flag
xor a
ld (hl), a
@@ -456,72 +460,83 @@ sdcWriteBlk:
pop hl
ret

; Considering the first 7 bits of HL, select the most appropriate of our two
; Considering the first 15 bits of EHL, select the most appropriate of our two
; buffers and, if necessary, sync that buffer with the SD card. If the selected
; buffer doesn't have the same sector as what HL asks, load that buffer from
; buffer doesn't have the same sector as what EHL asks, load that buffer from
; the SD card.
; If the dirty flag is set, we write the content of the in-memory buffer to the
; SD card before we read a new sector.
; Returns Z on success, not-Z on error (with the error code from either
; sdcReadBlk or sdcWriteBlk)
sdcSync:
; HL points to the character we're supposed to read or right now. Let's
; extract the wanted sector from this.
push de
; Given a 24-bit address in EHL, extracts the 15-bit sector from it and
; place it in DE.
; We need to shift both E and H right by one bit
srl e ; sets Carry
ld d, e
ld a, h
srl a ; A --> the requested sector number
push hl ; Save the requested addr for later
ld l, a
rra ; takes Carry
ld e, a
; Let's first see if our first buffer has our sector
ld a, (SDC_BUFSEC1)
cp l
ld a, (SDC_BUFSEC1) ; sector LSB
cp e
jr nz, .notBuf1
ld a, (SDC_BUFSEC1+1) ; sector MSB
cp d
jr z, .buf1Ok

.notBuf1:
; Ok, let's check for buf2 then
ld a, (SDC_BUFSEC2)
cp l
ld a, (SDC_BUFSEC2) ; sector LSB
cp e
jr nz, .notBuf2
ld a, (SDC_BUFSEC2+1) ; sector MSB
cp d
jr z, .buf2Ok

.notBuf2:
; None of our two buffers have the sector we need, we'll need to load
; a new one.

; We select our buffer depending on which is dirty. If both are on the
; same status of dirtiness, we pick any (the first in our case). If one
; of them is dirty, we pick the clean one.
ld hl, SDC_BUFSEC1
ld a, (SDC_BUFDIRTY1)
or a ; is buf1 dirty?
jr z, .ready ; no? good, that's our buffer
; yes? then buf2 is our buffer.
ld hl, SDC_BUFSEC2

.ready:
; At this point, HL points to one of our two buffers, the good one.
; Let's save it to SDC_BUFPTR
ld (SDC_BUFPTR), hl

; You remember that HL we saved a long time ago? Now's the time to
; bring it back.
pop hl
push de ; <|
ld de, SDC_BUFSEC1 ; |
ld a, (SDC_BUFDIRTY1) ; |
or a ; | is buf1 dirty?
jr z, .ready ; | no? good, that's our buffer
; yes? then buf2 is our buffer. ; |
ld de, SDC_BUFSEC2 ; |
; |
.ready: ; |
; At this point, DE points to one o|f our two buffers, the good one.
; Let's save it to SDC_BUFPTR |
ld (SDC_BUFPTR), de ; |
; |
pop de ; <|

; We have to read a new sector, but first, let's write the current one
; if needed.
call sdcWriteBlk
ret nz ; error
; Let's read our new sector
ld a, h
srl a
jp sdcReadBlk ; returns
jr nz, .end ; error
; Let's read our new sector in DE
call sdcReadBlk
jr .end

.buf1Ok:
ld hl, SDC_BUFSEC1
ld (SDC_BUFPTR), hl
pop hl
ret
ld de, SDC_BUFSEC1
ld (SDC_BUFPTR), de
jr .end

.buf2Ok:
ld hl, SDC_BUFSEC2
ld (SDC_BUFPTR), hl
pop hl
ld de, SDC_BUFSEC2
ld (SDC_BUFPTR), de
; to .end
.end:
pop de
ret

; *** shell cmds ***
@@ -539,12 +554,13 @@ sdcInitializeCmd:
; way, no need for special conditions.
; initialize variables
ld hl, SDC_BUFSEC1
xor a
ld (SDC_BUFPTR), hl
ld de, 0
call sdcReadBlk ; read sector 0 in buf1
ret nz
ld hl, SDC_BUFSEC2
inc a
ld (SDC_BUFPTR), hl
inc de
jp sdcReadBlk ; read sector 1 in buf2, returns

; Flush the current SDC buffer if dirty
@@ -561,13 +577,17 @@ sdcFlushCmd:
; *** blkdev routines ***

; Make HL point to its proper place in SDC_BUF.
; HL currently is an offset to read in the SD card. Load the proper sector in
; memory and make HL point to the correct data in the memory buffer.
; EHL currently is a 24-bit offset to read in the SD card. E=high byte,
; HL=low word. Load the proper sector in memory and make HL point to the
; correct data in the memory buffer.
_sdcPlaceBuf:
call sdcSync
ret nz ; error
; At this point, we have the proper buffer in place and synced in
; (SDC_BUFPTR). Only the 9 low bits of HL are important.
push de
ld de, (SDC_BUFPTR)
inc de ; sector LSB
inc de ; dirty flag
inc de ; contents
ld a, h ; high byte
@@ -617,6 +637,7 @@ sdcPutC:
; Now, let's set the dirty flag
ld a, 1
ld hl, (SDC_BUFPTR)
inc hl ; sector MSB
inc hl ; point to dirty flag
ld (hl), a ; set dirty flag
xor a ; ensure Z


+ 17
- 1
recipes/rc2014/zasm/Makefile View File

@@ -1,4 +1,9 @@
CFSTARGETS = cfsin/zasm cfsin/sdct cfsin/user.h
# source files required to build os.bin. We copy them in cfsin so that we can
# build the same kernel from within the RC2014.
KERNEL_SRCS = err.h acia.asm blockdev.asm blockdev_cmds.asm core.asm fs.asm \
fs_cmds.asm mmap.asm parse.asm pgm.asm sdc.asm shell.asm stdio.asm

CFSTARGETS = $(addprefix cfsin/, zasm sdct at28w user.h $(KERNEL_SRCS))
BASE = ../../..
TOOLS = $(BASE)/tools
ZASM = $(TOOLS)/zasm.sh
@@ -24,5 +29,16 @@ cfsin/zasm: $(ZASMBIN)
cfsin/sdct: $(ZASMBIN)
$(ZASM) $(APPS) user.h < $(APPS)/sdct/glue.asm > $@

cfsin/at28w: $(ZASMBIN)
$(ZASM) $(APPS) $(KERNEL) user.h < $(APPS)/at28w/glue.asm > $@

cfsin/user.h: user.h
cp $< $@
cfsin/err.h: $(KERNEL)/err.h
cp $< $@
cfsin/%.asm: $(KERNEL)/%.asm
cp $< $@

.PHONY: clean
clean:
rm -f $(CFSTARGETS) sdcard.cfs os.bin

+ 4
- 3
recipes/rc2014/zasm/glue.asm View File

@@ -1,10 +1,10 @@
; classic RC2014 setup (8K ROM + 32K RAM) and a stock Serial I/O module
; The RAM module is selected on A15, so it has the range 0x8000-0xffff
.equ RAMSTART 0x8000
; kernel RAM usage, because of SDC, is a bit high and bring us almost to 0x9c00
; kernel RAM usage, because of SDC, is a bit high and bring us almost to 0x9e00
; We allocate at least 0x100 bytes for RAM, which is why we have this threshold.
; for the stack.
.equ RAMEND 0x9d00
.equ RAMEND 0xa000
.equ PGM_CODEADDR RAMEND
.equ ACIA_CTL 0x80 ; Control and status. RS off.
.equ ACIA_IO 0x81 ; Transmit. RS on.
@@ -44,11 +44,12 @@ jp aciaInt
jp printHexPair
jp sdcGetC
jp sdcPutC
jp blkGetC

#include "err.h"
#include "core.asm"
#include "parse.asm"
.equ ACIA_RAMSTART RAMSTART
.equ ACIA_RAMSTART RAMSTART
#include "acia.asm"
.equ BLOCKDEV_RAMSTART ACIA_RAMEND
.equ BLOCKDEV_COUNT 4


+ 2
- 1
recipes/rc2014/zasm/user.h View File

@@ -1,4 +1,4 @@
.equ USER_CODE 0x9d00
.equ USER_CODE 0xa000
.equ USER_RAMSTART USER_CODE+0x1800
.equ FS_HANDLE_SIZE 6
.equ BLOCKDEV_SIZE 8
@@ -31,3 +31,4 @@
.equ printHexPair 0x4d
.equ sdcGetC 0x50
.equ sdcPutC 0x53
.equ blkGetC 0x56

Loading…
Cancel
Save