瀏覽代碼

zasm: introduce the concept of instruction ID

It will make tokenization cleaner and it also makes the instruction
table significantly more compact.
pull/10/head
Virgil Dupras 5 年之前
父節點
當前提交
98ad223ee1
共有 3 個檔案被更改,包括 302 行新增166 行删除
  1. +293
    -162
      apps/zasm/instr.asm
  2. +3
    -4
      apps/zasm/tests/geninstrs.py
  3. +6
    -0
      apps/zasm/tok.asm

+ 293
- 162
apps/zasm/instr.asm 查看文件

@@ -4,7 +4,60 @@ ARGSPEC_TBL_CNT .equ 31
; Number of rows in the primary instructions table
INSTR_TBL_CNT .equ 135
; size in bytes of each row in the primary instructions table
INSTR_TBL_ROWSIZE .equ 9
INSTR_TBL_ROWSIZE .equ 6
; Instruction IDs They correspond to the index of the table in instrNames
I_ADC .equ 0x00
I_ADD .equ 0x01
I_AND .equ 0x02
I_BIT .equ 0x03
I_CALL .equ 0x04
I_CCF .equ 0x05
I_CP .equ 0x06
I_CPD .equ 0x07
I_CPDR .equ 0x08
I_CPI .equ 0x09
I_CPIR .equ 0x0a
I_CPL .equ 0x0b
I_DAA .equ 0x0c
I_DEC .equ 0x0d
I_DI .equ 0x0e
I_DJNZ .equ 0x0f
I_EI .equ 0x10
I_EX .equ 0x11
I_EXX .equ 0x12
I_HALT .equ 0x13
I_IM .equ 0x14
I_IN .equ 0x15
I_INC .equ 0x16
I_IND .equ 0x17
I_INDR .equ 0x18
I_INI .equ 0x19
I_INIR .equ 0x1a
I_JP .equ 0x1b
I_JR .equ 0x1c
I_LD .equ 0x1d
I_LDD .equ 0x1e
I_LDDR .equ 0x1f
I_LDI .equ 0x20
I_LDIR .equ 0x21
I_NEG .equ 0x22
I_NOP .equ 0x23
I_OR .equ 0x24
I_OTDR .equ 0x25
I_OTIR .equ 0x26
I_OUT .equ 0x27
I_POP .equ 0x28
I_PUSH .equ 0x29
I_RET .equ 0x2a
I_RLA .equ 0x2b
I_RLCA .equ 0x2c
I_RRA .equ 0x2d
I_RRCA .equ 0x2e
I_SBC .equ 0x2f
I_SCF .equ 0x30
I_SUB .equ 0x31
I_XOR .equ 0x32
I_BAD .equ 0xff

; Checks whether A is 'N' or 'M'
checkNOrM:
@@ -24,6 +77,31 @@ checknmxy:
cp 'y'
ret

; Reads instruction mnemonic in (HL) and returns the corresponding ID (I_*)
; in A. I_BAD if there's no match.
getInstID:
push bc
push de
ld b, I_XOR+1 ; I_XOR is the last
ld de, instrNames
.loop:
ld a, 4
call JUMP_STRNCMP
ld a, 4
call JUMP_ADDDE
jr z, .match
djnz .loop
; no match
ld a, I_BAD
jr .end
.match:
ld a, I_XOR+1
sub b
.end:
pop de
pop bc
ret

; Parse the decimal char at A and extract it's 0-9 numerical value. Put the
; result in A.
;
@@ -350,24 +428,23 @@ matchArg:
dec hl
ret

; Compare primary row at (DE) with string at tokInstr. Sets Z flag if there's a
; Compare primary row at (DE) with ID at (tokInstr). Sets Z flag if there's a
; match, reset if not.
matchPrimaryRow:
push hl
push ix
ld hl, tokInstr
ld a, 4
call JUMP_STRNCMP
jr nz, .end
; name matches, let's see the rest
ld ixh, d
ld ixl, e
ld a, (tokInstr)
cp (ix)
jr nz, .end
; name matches, let's see the rest
ld hl, curArg1
ld a, (ix+4)
ld a, (ix+1)
call matchArg
jr nz, .end
ld hl, curArg2
ld a, (ix+5)
ld a, (ix+2)
call matchArg
.end:
pop ix
@@ -547,23 +624,23 @@ getUpcode:
ld ixl, e

; Are we a "special instruction"?
bit 5, (ix+6)
bit 5, (ix+3)
jr z, .normalInstr ; not set: normal instruction
; We are a special instruction. Fetch handler (little endian, remember).
ld l, (ix+7)
ld h, (ix+8)
ld l, (ix+4)
ld h, (ix+5)
call callHL
; We have our result written in curUpcode and C is set.
jp .end

.normalInstr:
; we begin by writing our "base upcode", which can be one or two bytes
ld a, (ix+7) ; first upcode
ld a, (ix+4) ; first upcode
ld (curUpcode), a
ld de, curUpcode ; from this point, DE points to "where we are"
; in terms of upcode writing.
inc de ; make DE point to where we should write next.
ld a, (ix+8) ; second upcode
ld a, (ix+5) ; second upcode
cp 0 ; do we have a second upcode?
jr z, .onlyOneUpcode
; we have two upcodes
@@ -571,11 +648,11 @@ getUpcode:
inc de
.onlyOneUpcode:
; now, let's see if we're dealing with a group here
ld a, (ix+4) ; first argspec
ld a, (ix+1) ; first argspec
call isGroupId
jr z, .firstArgIsGroup
; First arg not a group. Maybe second is?
ld a, (ix+5) ; 2nd argspec
ld a, (ix+2) ; 2nd argspec
call isGroupId
jr nz, .writeExtraBytes ; not a group? nothing to do. go to
; next step: write extra bytes
@@ -592,7 +669,7 @@ getUpcode:
; Now, we have our arg "group value" in A. Were going to need to
; displace it left by the number of steps specified in the table.
push af
ld a, (ix+6) ; displacement bit
ld a, (ix+3) ; displacement bit
and a, 0xf ; we only use the lower nibble.
ld b, a
pop af
@@ -602,13 +679,13 @@ getUpcode:
; to OR it with the opcode.
; However, we first have to verify whether this ORing takes place on
; the second upcode or the first.
bit 6, (ix+6)
bit 6, (ix+3)
jr z, .firstUpcode ; not set: first upcode
or (ix+8) ; second upcode
or (ix+5) ; second upcode
ld (curUpcode+1), a
jr .writeExtraBytes
.firstUpcode:
or (ix+7) ; first upcode
or (ix+4) ; first upcode
ld (curUpcode), a
jr .writeExtraBytes
.writeExtraBytes:
@@ -618,13 +695,13 @@ getUpcode:
; We still have our instruction row in IX and we have DE pointing to
; where we should write next (which could be the second or the third
; byte of curUpcode).
ld a, (ix+4) ; first argspec
ld a, (ix+1) ; first argspec
ld hl, curArg1
call checkNOrM
jr z, .withWord
call checknmxy
jr z, .withByte
ld a, (ix+5) ; second argspec
ld a, (ix+2) ; second argspec
ld hl, curArg2
call checkNOrM
jr z, .withWord
@@ -644,7 +721,7 @@ getUpcode:
; HL points to our number
; one last thing to check. Is the 7th bit on the displacement value set?
; if yes, we have to decrease our value by 2. Uses for djnz and jr.
bit 7, (ix+6)
bit 7, (ix+3)
jr z, .skipDecrease
; Yup, it's set.
dec (hl)
@@ -665,8 +742,8 @@ getUpcode:
; At this point, everything that we needed to write in curUpcode is
; written an C is 1 if we have no extra byte, 2 if we have an extra
; byte and 3 if we have an extra word. What we need to do here is check
; if ix+8 is non-zero and increase C if it is.
ld a, (ix+8)
; if ix+5 is non-zero and increase C if it is.
ld a, (ix+5)
cp 0
jr z, .end ; no second upcode? nothing to do.
; We have 2 base upcodes
@@ -711,7 +788,7 @@ parseTokens:
push hl
push de
ld a, (tokInstr)
cp 0
cp I_BAD
jr z, .error ; for now, we treat blank lines as errors
ld hl, tokArg1
ld de, curArg1
@@ -818,10 +895,64 @@ argGrpCC:
argGrpABCDEHL:
.db "BCDEHL_A" ; 0xb

; Each row is 4 bytes wide, fill with zeroes
instrNames:
.db "ADC", 0
.db "ADD", 0
.db "AND", 0
.db "BIT", 0
.db "CALL"
.db "CCF", 0
.db "CP",0,0
.db "CPD", 0
.db "CPDR"
.db "CPI", 0
.db "CPIR"
.db "CPL", 0
.db "DAA", 0
.db "DEC", 0
.db "DI",0,0
.db "DJNZ"
.db "EI",0,0
.db "EX",0,0
.db "EXX", 0
.db "HALT"
.db "IM",0,0
.db "IN",0,0
.db "INC", 0
.db "IND", 0
.db "INDR"
.db "INI", 0
.db "INIR"
.db "JP",0,0
.db "JR",0,0
.db "LD",0,0
.db "LDD", 0
.db "LDDR"
.db "LDI", 0
.db "LDIR"
.db "NEG", 0
.db "NOP", 0
.db "OR",0,0
.db "OTDR"
.db "OTIR"
.db "OUT", 0
.db "POP", 0
.db "PUSH"
.db "RET", 0
.db "RLA", 0
.db "RLCA"
.db "RRA", 0
.db "RRCA"
.db "SBC", 0
.db "SCF", 0
.db "SUB", 0
.db "XOR", 0

; This is a list of all supported instructions. Each row represent a combination
; of instr/argspecs (which means more than one row per instr). Format:
;
; 4 bytes for the name (fill with zero)
; 1 byte for the instruction ID
; 1 byte for arg constant
; 1 byte for 2nd arg constant
; 1 byte displacement for group arguments + flags
@@ -842,141 +973,141 @@ argGrpABCDEHL:
; custom code.

instrTBl:
.db "ADC", 0, 'A', 'l', 0, 0x8e , 0 ; ADC A, (HL)
.db "ADC", 0, 'A', 0xb, 0, 0b10001000 , 0 ; ADC A, r
.db "ADC", 0, 'A', 'n', 0, 0xce , 0 ; ADC A, n
.db "ADC", 0,'h',0x3,0x44, 0xed, 0b01001010 ; ADC HL, ss
.db "ADD", 0, 'A', 'l', 0, 0x86 , 0 ; ADD A, (HL)
.db "ADD", 0, 'A', 0xb, 0, 0b10000000 , 0 ; ADD A, r
.db "ADD", 0, 'A', 'n', 0, 0xc6 , 0 ; ADD A, n
.db "ADD", 0, 'h', 0x3, 4, 0b00001001 , 0 ; ADD HL, ss
.db "ADD", 0,'X',0x4,0x44, 0xdd, 0b00001001 ; ADD IX, pp
.db "ADD", 0,'Y',0x5,0x44, 0xfd, 0b00001001 ; ADD IY, rr
.db "ADD", 0, 'A', 'x', 0, 0xdd, 0x86 ; ADD A, (IX+d)
.db "ADD", 0, 'A', 'y', 0, 0xfd, 0x86 ; ADD A, (IY+d)
.db "AND", 0, 'l', 0, 0, 0xa6 , 0 ; AND (HL)
.db "AND", 0, 0xb, 0, 0, 0b10100000 , 0 ; AND r
.db "AND", 0, 'n', 0, 0, 0xe6 , 0 ; AND n
.db "AND", 0, 'x', 0, 0, 0xdd, 0xa6 ; AND (IX+d)
.db "AND", 0, 'y', 0, 0, 0xfd, 0xa6 ; AND (IY+d)
.db "BIT", 0,'n','l',0x20 \ .dw handleBITHL ; BIT b, (HL)
.db "BIT", 0,'n','x',0x20 \ .dw handleBITIX ; BIT b, (IX+d)
.db "BIT", 0,'n','y',0x20 \ .dw handleBITIY ; BIT b, (IY+d)
.db "BIT", 0,'n',0xb,0x20 \ .dw handleBITR ; BIT b, r
.db "CALL", 0xa, 'N', 3, 0b11000100 , 0 ; CALL cc, NN
.db "CALL", 'N', 0, 0, 0xcd , 0 ; CALL NN
.db "CCF", 0, 0, 0, 0, 0x3f , 0 ; CCF
.db "CP",0,0, 'l', 0, 0, 0xbe , 0 ; CP (HL)
.db "CP",0,0, 0xb, 0, 0, 0b10111000 , 0 ; CP r
.db "CP",0,0, 'n', 0, 0, 0xfe , 0 ; CP n
.db "CP",0,0, 'x', 0, 0, 0xdd, 0xbe ; CP (IX+d)
.db "CP",0,0, 'y', 0, 0, 0xfd, 0xbe ; CP (IY+d)
.db "CPD", 0, 0, 0, 0, 0xed, 0xa9 ; CPD
.db "CPDR", 0, 0, 0, 0xed, 0xb9 ; CPDR
.db "CPI", 0, 0, 0, 0, 0xed, 0xa1 ; CPI
.db "CPIR", 0, 0, 0, 0xed, 0xb1 ; CPIR
.db "CPL", 0, 0, 0, 0, 0x2f , 0 ; CPL
.db "DAA", 0, 0, 0, 0, 0x27 , 0 ; DAA
.db "DEC", 0, 'l', 0, 0, 0x35 , 0 ; DEC (HL)
.db "DEC", 0, 'X', 0, 0, 0xdd , 0x2b ; DEC IX
.db "DEC", 0, 'x', 0, 0, 0xdd , 0x35 ; DEC (IX+d)
.db "DEC", 0, 'Y', 0, 0, 0xfd , 0x2b ; DEC IY
.db "DEC", 0, 'y', 0, 0, 0xfd , 0x35 ; DEC (IY+d)
.db "DEC", 0, 0xb, 0, 3, 0b00000101 , 0 ; DEC r
.db "DEC", 0, 0x3, 0, 4, 0b00001011 , 0 ; DEC ss
.db "DI",0,0, 0, 0, 0, 0xf3 , 0 ; DI
.db "DJNZ", 'n', 0,0x80, 0x10 , 0 ; DJNZ e
.db "EI",0,0, 0, 0, 0, 0xfb , 0 ; EI
.db "EX",0,0, 'p', 'h', 0, 0xe3 , 0 ; EX (SP), HL
.db "EX",0,0, 'p', 'X', 0, 0xdd, 0xe3 ; EX (SP), IX
.db "EX",0,0, 'p', 'Y', 0, 0xfd, 0xe3 ; EX (SP), IY
.db "EX",0,0, 'a', 'f', 0, 0x08 , 0 ; EX AF, AF'
.db "EX",0,0, 'd', 'h', 0, 0xeb , 0 ; EX DE, HL
.db "EXX", 0, 0, 0, 0, 0xd9 , 0 ; EXX
.db "HALT", 0, 0, 0, 0x76 , 0 ; HALT
.db "IM",0,0,'n', 0,0x20 \ .dw handleIM ; IM {0,1,2}
.db "IN",0,0, 'A', 'm', 0, 0xdb , 0 ; IN A, (n)
.db "IN",0,0,0xb,'k',0x43, 0xed, 0b01000000 ; IN r, (C)
.db "INC", 0, 'l', 0, 0, 0x34 , 0 ; INC (HL)
.db "INC", 0, 'X', 0, 0, 0xdd , 0x23 ; INC IX
.db "INC", 0, 'x', 0, 0, 0xdd , 0x34 ; INC (IX+d)
.db "INC", 0, 'Y', 0, 0, 0xfd , 0x23 ; INC IY
.db "INC", 0, 'y', 0, 0, 0xfd , 0x34 ; INC (IY+d)
.db "INC", 0, 0xb, 0, 3, 0b00000100 , 0 ; INC r
.db "INC", 0, 0x3, 0, 4, 0b00000011 , 0 ; INC ss
.db "IND", 0, 0, 0, 0, 0xed, 0xaa ; IND
.db "INDR", 0, 0, 0, 0xed, 0xba ; INDR
.db "INI", 0, 0, 0, 0, 0xed, 0xa2 ; INI
.db "INIR", 0, 0, 0, 0xed, 0xb2 ; INIR
.db "JP",0,0, 'l', 0, 0, 0xe9 , 0 ; JP (HL)
.db "JP",0,0, 0xa, 'N', 3, 0b11000010 , 0 ; JP cc, NN
.db "JP",0,0, 'N', 0, 0, 0xc3 , 0 ; JP NN
.db "JP",0,0, 'x', 0,0x20 \ .dw handleJPIX ; JP (IX)
.db "JP",0,0, 'y', 0,0x20 \ .dw handleJPIY ; JP (IY)
.db "JR",0,0, 'n', 0,0x80, 0x18 , 0 ; JR e
.db "JR",0,0,'C','n',0x80, 0x38 , 0 ; JR C, e
.db "JR",0,0,'=','n',0x80, 0x30 , 0 ; JR NC, e
.db "JR",0,0,'Z','n',0x80, 0x28 , 0 ; JR Z, e
.db "JR",0,0,'z','n',0x80, 0x20 , 0 ; JR NZ, e
.db "LD",0,0, 'c', 'A', 0, 0x02 , 0 ; LD (BC), A
.db "LD",0,0, 'e', 'A', 0, 0x12 , 0 ; LD (DE), A
.db "LD",0,0, 'A', 'c', 0, 0x0a , 0 ; LD A, (BC)
.db "LD",0,0, 'A', 'e', 0, 0x1a , 0 ; LD A, (DE)
.db "LD",0,0, 's', 'h', 0, 0xf9 , 0 ; LD SP, HL
.db "LD",0,0, 'A', 'I', 0, 0xed, 0x57 ; LD A, I
.db "LD",0,0, 'I', 'A', 0, 0xed, 0x47 ; LD I, A
.db "LD",0,0, 'A', 'R', 0, 0xed, 0x5f ; LD A, R
.db "LD",0,0, 'R', 'A', 0, 0xed, 0x4f ; LD R, A
.db "LD",0,0, 'l', 0xb, 0, 0b01110000 , 0 ; LD (HL), r
.db "LD",0,0, 0xb, 'l', 3, 0b01000110 , 0 ; LD r, (HL)
.db "LD",0,0, 'l', 'n', 0, 0x36 , 0 ; LD (HL), n
.db "LD",0,0, 0xb, 'n', 3, 0b00000110 , 0 ; LD r, (HL)
.db "LD",0,0, 0x3, 'N', 4, 0b00000001 , 0 ; LD dd, n
.db "LD",0,0, 'M', 'A', 0, 0x32 , 0 ; LD (NN), A
.db "LD",0,0, 'A', 'M', 0, 0x3a , 0 ; LD A, (NN)
.db "LD",0,0, 'M', 'h', 0, 0x22 , 0 ; LD (NN), HL
.db "LD",0,0, 'h', 'M', 0, 0x2a , 0 ; LD HL, (NN)
.db "LD",0,0, 'M', 'X', 0, 0xdd, 0x22 ; LD (NN), IX
.db "LD",0,0, 'X', 'M', 0, 0xdd, 0x2a ; LD IX, (NN)
.db "LD",0,0, 'M', 'Y', 0, 0xfd, 0x22 ; LD (NN), IY
.db "LD",0,0, 'Y', 'M', 0, 0xfd, 0x2a ; LD IY, (NN)
.db "LD",0,0,'M',0x3,0x44, 0xed, 0b01000011 ; LD (NN), dd
.db "LD",0,0,0x3,'M',0x44, 0xed, 0b01001011 ; LD dd, (NN)
.db "LD",0,0, 'x','n',0x20 \ .dw handleLDIXn ; LD (IX+d), n
.db "LD",0,0, 'y','n',0x20 \ .dw handleLDIYn ; LD (IY+d), n
.db "LD",0,0, 'x',0xb,0x20 \ .dw handleLDIXr ; LD (IX+d), r
.db "LD",0,0, 'y',0xb,0x20 \ .dw handleLDIYr ; LD (IY+d), r
.db "LDD", 0, 0, 0, 0, 0xed, 0xa8 ; LDD
.db "LDDR", 0, 0, 0, 0xed, 0xb8 ; LDDR
.db "LDI", 0, 0, 0, 0, 0xed, 0xa0 ; LDI
.db "LDIR", 0, 0, 0, 0xed, 0xb0 ; LDIR
.db "NEG", 0, 0, 0, 0, 0xed, 0x44 ; NEG
.db "NOP", 0, 0, 0, 0, 0x00 , 0 ; NOP
.db "OR",0,0, 'l', 0, 0, 0xb6 , 0 ; OR (HL)
.db "OR",0,0, 0xb, 0, 0, 0b10110000 , 0 ; OR r
.db "OR",0,0, 'n', 0, 0, 0xf6 , 0 ; OR n
.db "OR",0,0, 'x', 0, 0, 0xdd, 0xb6 ; OR (IX+d)
.db "OR",0,0, 'y', 0, 0, 0xfd, 0xb6 ; OR (IY+d)
.db "OTDR", 0, 0, 0, 0xed, 0xbb ; OTDR
.db "OTIR", 0, 0, 0, 0xed, 0xb3 ; OTIR
.db "OUT", 0, 'm', 'A', 0, 0xd3 , 0 ; OUT (n), A
.db "OUT", 0,'k',0xb,0x43, 0xed, 0b01000001 ; OUT (C), r
.db "POP", 0, 0x1, 0, 4, 0b11000001 , 0 ; POP qq
.db "PUSH", 0x1, 0, 4, 0b11000101 , 0 ; PUSH qq
.db "RET", 0, 0, 0, 0, 0xc9 , 0 ; RET
.db "RET", 0, 0xa, 0, 3, 0b11000000 , 0 ; RET cc
.db "RLA", 0, 0, 0, 0, 0x17 , 0 ; RLA
.db "RLCA", 0, 0, 0, 0x07 , 0 ; RLCA
.db "RRA", 0, 0, 0, 0, 0x1f , 0 ; RRA
.db "RRCA", 0, 0, 0, 0x0f , 0 ; RRCA
.db "SBC", 0, 'A', 'l', 0, 0x9e , 0 ; SBC A, (HL)
.db "SBC", 0, 'A', 0xb, 0, 0b10011000 , 0 ; SBC A, r
.db "SCF", 0, 0, 0, 0, 0x37 , 0 ; SCF
.db "SUB", 0, 'A', 'l', 0, 0x96 , 0 ; SUB A, (HL)
.db "SUB", 0, 'A', 0xb, 0, 0b10010000 , 0 ; SUB A, r
.db "SUB", 0, 'n', 0, 0, 0xd6 , 0 ; SUB n
.db "XOR", 0, 'l', 0, 0, 0xae , 0 ; XOR (HL)
.db "XOR", 0, 0xb, 0, 0, 0b10101000 , 0 ; XOR r
.db I_ADC, 'A', 'l', 0, 0x8e , 0 ; ADC A, (HL)
.db I_ADC, 'A', 0xb, 0, 0b10001000 , 0 ; ADC A, r
.db I_ADC, 'A', 'n', 0, 0xce , 0 ; ADC A, n
.db I_ADC, 'h', 0x3, 0x44, 0xed, 0b01001010 ; ADC HL, ss
.db I_ADD, 'A', 'l', 0, 0x86 , 0 ; ADD A, (HL)
.db I_ADD, 'A', 0xb, 0, 0b10000000 , 0 ; ADD A, r
.db I_ADD, 'A', 'n', 0, 0xc6 , 0 ; ADD A, n
.db I_ADD, 'h', 0x3, 4, 0b00001001 , 0 ; ADD HL, ss
.db I_ADD, 'X', 0x4, 0x44, 0xdd, 0b00001001 ; ADD IX, pp
.db I_ADD, 'Y', 0x5, 0x44, 0xfd, 0b00001001 ; ADD IY, rr
.db I_ADD, 'A', 'x', 0, 0xdd, 0x86 ; ADD A, (IX+d)
.db I_ADD, 'A', 'y', 0, 0xfd, 0x86 ; ADD A, (IY+d)
.db I_AND, 'l', 0, 0, 0xa6 , 0 ; AND (HL)
.db I_AND, 0xb, 0, 0, 0b10100000 , 0 ; AND r
.db I_AND, 'n', 0, 0, 0xe6 , 0 ; AND n
.db I_AND, 'x', 0, 0, 0xdd, 0xa6 ; AND (IX+d)
.db I_AND, 'y', 0, 0, 0xfd, 0xa6 ; AND (IY+d)
.db I_BIT, 'n', 'l', 0x20 \ .dw handleBITHL ; BIT b, (HL)
.db I_BIT, 'n', 'x', 0x20 \ .dw handleBITIX ; BIT b, (IX+d)
.db I_BIT, 'n', 'y', 0x20 \ .dw handleBITIY ; BIT b, (IY+d)
.db I_BIT, 'n', 0xb, 0x20 \ .dw handleBITR ; BIT b, r
.db I_CALL,0xa, 'N', 3, 0b11000100 , 0 ; CALL cc, NN
.db I_CALL,'N', 0, 0, 0xcd , 0 ; CALL NN
.db I_CCF, 0, 0, 0, 0x3f , 0 ; CCF
.db I_CP, 'l', 0, 0, 0xbe , 0 ; CP (HL)
.db I_CP, 0xb, 0, 0, 0b10111000 , 0 ; CP r
.db I_CP, 'n', 0, 0, 0xfe , 0 ; CP n
.db I_CP, 'x', 0, 0, 0xdd, 0xbe ; CP (IX+d)
.db I_CP, 'y', 0, 0, 0xfd, 0xbe ; CP (IY+d)
.db I_CPD, 0, 0, 0, 0xed, 0xa9 ; CPD
.db I_CPDR,0, 0, 0, 0xed, 0xb9 ; CPDR
.db I_CPI, 0, 0, 0, 0xed, 0xa1 ; CPI
.db I_CPIR,0, 0, 0, 0xed, 0xb1 ; CPIR
.db I_CPL, 0, 0, 0, 0x2f , 0 ; CPL
.db I_DAA, 0, 0, 0, 0x27 , 0 ; DAA
.db I_DEC, 'l', 0, 0, 0x35 , 0 ; DEC (HL)
.db I_DEC, 'X', 0, 0, 0xdd, 0x2b ; DEC IX
.db I_DEC, 'x', 0, 0, 0xdd, 0x35 ; DEC (IX+d)
.db I_DEC, 'Y', 0, 0, 0xfd, 0x2b ; DEC IY
.db I_DEC, 'y', 0, 0, 0xfd, 0x35 ; DEC (IY+d)
.db I_DEC, 0xb, 0, 3, 0b00000101 , 0 ; DEC r
.db I_DEC, 0x3, 0, 4, 0b00001011 , 0 ; DEC ss
.db I_DI, 0, 0, 0, 0xf3 , 0 ; DI
.db I_DJNZ,'n', 0, 0x80, 0x10 , 0 ; DJNZ e
.db I_EI, 0, 0, 0, 0xfb , 0 ; EI
.db I_EX, 'p', 'h', 0, 0xe3 , 0 ; EX (SP), HL
.db I_EX, 'p', 'X', 0, 0xdd, 0xe3 ; EX (SP), IX
.db I_EX, 'p', 'Y', 0, 0xfd, 0xe3 ; EX (SP), IY
.db I_EX, 'a', 'f', 0, 0x08 , 0 ; EX AF, AF'
.db I_EX, 'd', 'h', 0, 0xeb , 0 ; EX DE, HL
.db I_EXX, 0, 0, 0, 0xd9 , 0 ; EXX
.db I_HALT,0, 0, 0, 0x76 , 0 ; HALT
.db I_IM, 'n', 0, 0x20 \ .dw handleIM ; IM {0,1,2}
.db I_IN, 'A', 'm', 0, 0xdb , 0 ; IN A, (n)
.db I_IN, 0xb, 'k', 0x43, 0xed, 0b01000000 ; IN r, (C)
.db I_INC, 'l', 0, 0, 0x34 , 0 ; INC (HL)
.db I_INC, 'X', 0, 0, 0xdd , 0x23 ; INC IX
.db I_INC, 'x', 0, 0, 0xdd , 0x34 ; INC (IX+d)
.db I_INC, 'Y', 0, 0, 0xfd , 0x23 ; INC IY
.db I_INC, 'y', 0, 0, 0xfd , 0x34 ; INC (IY+d)
.db I_INC, 0xb, 0, 3, 0b00000100 , 0 ; INC r
.db I_INC, 0x3, 0, 4, 0b00000011 , 0 ; INC ss
.db I_IND, 0, 0, 0, 0xed, 0xaa ; IND
.db I_INDR,0, 0, 0, 0xed, 0xba ; INDR
.db I_INI, 0, 0, 0, 0xed, 0xa2 ; INI
.db I_INIR,0, 0, 0, 0xed, 0xb2 ; INIR
.db I_JP, 'l', 0, 0, 0xe9 , 0 ; JP (HL)
.db I_JP, 0xa, 'N', 3, 0b11000010 , 0 ; JP cc, NN
.db I_JP, 'N', 0, 0, 0xc3 , 0 ; JP NN
.db I_JP, 'x', 0, 0x20 \ .dw handleJPIX ; JP (IX)
.db I_JP, 'y', 0, 0x20 \ .dw handleJPIY ; JP (IY)
.db I_JR, 'n', 0, 0x80, 0x18 , 0 ; JR e
.db I_JR, 'C', 'n', 0x80, 0x38 , 0 ; JR C, e
.db I_JR, '=', 'n', 0x80, 0x30 , 0 ; JR NC, e
.db I_JR, 'Z', 'n', 0x80, 0x28 , 0 ; JR Z, e
.db I_JR, 'z', 'n', 0x80, 0x20 , 0 ; JR NZ, e
.db I_LD, 'c', 'A', 0, 0x02 , 0 ; LD (BC), A
.db I_LD, 'e', 'A', 0, 0x12 , 0 ; LD (DE), A
.db I_LD, 'A', 'c', 0, 0x0a , 0 ; LD A, (BC)
.db I_LD, 'A', 'e', 0, 0x1a , 0 ; LD A, (DE)
.db I_LD, 's', 'h', 0, 0xf9 , 0 ; LD SP, HL
.db I_LD, 'A', 'I', 0, 0xed, 0x57 ; LD A, I
.db I_LD, 'I', 'A', 0, 0xed, 0x47 ; LD I, A
.db I_LD, 'A', 'R', 0, 0xed, 0x5f ; LD A, R
.db I_LD, 'R', 'A', 0, 0xed, 0x4f ; LD R, A
.db I_LD, 'l', 0xb, 0, 0b01110000 , 0 ; LD (HL), r
.db I_LD, 0xb, 'l', 3, 0b01000110 , 0 ; LD r, (HL)
.db I_LD, 'l', 'n', 0, 0x36 , 0 ; LD (HL), n
.db I_LD, 0xb, 'n', 3, 0b00000110 , 0 ; LD r, (HL)
.db I_LD, 0x3, 'N', 4, 0b00000001 , 0 ; LD dd, n
.db I_LD, 'M', 'A', 0, 0x32 , 0 ; LD (NN), A
.db I_LD, 'A', 'M', 0, 0x3a , 0 ; LD A, (NN)
.db I_LD, 'M', 'h', 0, 0x22 , 0 ; LD (NN), HL
.db I_LD, 'h', 'M', 0, 0x2a , 0 ; LD HL, (NN)
.db I_LD, 'M', 'X', 0, 0xdd, 0x22 ; LD (NN), IX
.db I_LD, 'X', 'M', 0, 0xdd, 0x2a ; LD IX, (NN)
.db I_LD, 'M', 'Y', 0, 0xfd, 0x22 ; LD (NN), IY
.db I_LD, 'Y', 'M', 0, 0xfd, 0x2a ; LD IY, (NN)
.db I_LD, 'M', 0x3, 0x44, 0xed, 0b01000011 ; LD (NN), dd
.db I_LD, 0x3, 'M', 0x44, 0xed, 0b01001011 ; LD dd, (NN)
.db I_LD, 'x', 'n', 0x20 \ .dw handleLDIXn ; LD (IX+d), n
.db I_LD, 'y', 'n', 0x20 \ .dw handleLDIYn ; LD (IY+d), n
.db I_LD, 'x', 0xb, 0x20 \ .dw handleLDIXr ; LD (IX+d), r
.db I_LD, 'y', 0xb, 0x20 \ .dw handleLDIYr ; LD (IY+d), r
.db I_LDD, 0, 0, 0, 0xed, 0xa8 ; LDD
.db I_LDDR,0, 0, 0, 0xed, 0xb8 ; LDDR
.db I_LDI, 0, 0, 0, 0xed, 0xa0 ; LDI
.db I_LDIR,0, 0, 0, 0xed, 0xb0 ; LDIR
.db I_NEG, 0, 0, 0, 0xed, 0x44 ; NEG
.db I_NOP, 0, 0, 0, 0x00 , 0 ; NOP
.db I_OR, 'l', 0, 0, 0xb6 , 0 ; OR (HL)
.db I_OR, 0xb, 0, 0, 0b10110000 , 0 ; OR r
.db I_OR, 'n', 0, 0, 0xf6 , 0 ; OR n
.db I_OR, 'x', 0, 0, 0xdd, 0xb6 ; OR (IX+d)
.db I_OR, 'y', 0, 0, 0xfd, 0xb6 ; OR (IY+d)
.db I_OTDR,0, 0, 0, 0xed, 0xbb ; OTDR
.db I_OTIR,0, 0, 0, 0xed, 0xb3 ; OTIR
.db I_OUT, 'm', 'A', 0, 0xd3 , 0 ; OUT (n), A
.db I_OUT, 'k', 0xb, 0x43, 0xed, 0b01000001 ; OUT (C), r
.db I_POP, 0x1, 0, 4, 0b11000001 , 0 ; POP qq
.db I_PUSH,0x1, 0, 4, 0b11000101 , 0 ; PUSH qq
.db I_RET, 0, 0, 0, 0xc9 , 0 ; RET
.db I_RET, 0xa, 0, 3, 0b11000000 , 0 ; RET cc
.db I_RLA, 0, 0, 0, 0x17 , 0 ; RLA
.db I_RLCA,0, 0, 0, 0x07 , 0 ; RLCA
.db I_RRA, 0, 0, 0, 0x1f , 0 ; RRA
.db I_RRCA,0, 0, 0, 0x0f , 0 ; RRCA
.db I_SBC, 'A', 'l', 0, 0x9e , 0 ; SBC A, (HL)
.db I_SBC, 'A', 0xb, 0, 0b10011000 , 0 ; SBC A, r
.db I_SCF, 0, 0, 0, 0x37 , 0 ; SCF
.db I_SUB, 'A', 'l', 0, 0x96 , 0 ; SUB A, (HL)
.db I_SUB, 'A', 0xb, 0, 0b10010000 , 0 ; SUB A, r
.db I_SUB, 'n', 0, 0, 0xd6 , 0 ; SUB n
.db I_XOR, 'l', 0, 0, 0xae , 0 ; XOR (HL)
.db I_XOR, 0xb, 0, 0, 0b10101000 , 0 ; XOR r


; *** Variables ***


+ 3
- 4
apps/zasm/tests/geninstrs.py 查看文件

@@ -118,11 +118,10 @@ def main():
with open(asmfile, 'rt') as fp:
instrTbl = getDbLines(fp, 'instrTBl')
for row in instrTbl:
n = eval(row[0])
n = row[0][2:] # remove I_
# we need to adjust for zero-char name filling
arg1index = 5 - len(n)
a1 = eval(row[arg1index])
a2 = eval(row[arg1index+1])
a1 = eval(row[1])
a2 = eval(row[2])
args1 = genargs(a1)
# special case handling
if n == 'JP' and isinstance(a1, str) and a1 in 'xy':


+ 6
- 0
apps/zasm/tok.asm 查看文件

@@ -16,6 +16,10 @@ tokenize:
call toWord
ld a, 4
call readWord
ex hl, de
call getInstID
ex hl, de
ld (de), a
ret

tokenizeInstrArg:
@@ -62,6 +66,7 @@ isSepOrLineEnd:
; separator char.
readWord:
push bc
push de
ld b, a
.loop:
ld a, (hl)
@@ -82,6 +87,7 @@ readWord:
xor a
ld (de), a
.end:
pop de
pop bc
ret



Loading…
取消
儲存