9fb1467ee5
Pretty major improvements to both of these, cpHLDE is now 5 bytes shorter and between 9 and 12 cycles faster due to branching, and writeHLinDE is now 2 bytes shorter and 21 cycles faster.
247 lines
4.5 KiB
NASM
247 lines
4.5 KiB
NASM
; core
|
|
;
|
|
; Routines used by pretty much all parts. You will want to include it first
|
|
; in your glue file.
|
|
|
|
; *** CONSTS ***
|
|
.equ ASCII_BS 0x08
|
|
.equ ASCII_CR 0x0d
|
|
.equ ASCII_LF 0x0a
|
|
.equ ASCII_DEL 0x7f
|
|
|
|
; *** DATA ***
|
|
; Useful data to point to, when a pointer is needed.
|
|
P_NULL: .db 0
|
|
|
|
; *** REGISTER FIDDLING ***
|
|
|
|
; add the value of A into DE
|
|
addDE:
|
|
push af
|
|
add a, e
|
|
jr nc, .end ; no carry? skip inc
|
|
inc d
|
|
.end:
|
|
ld e, a
|
|
pop af
|
|
noop: ; piggy backing on the first "ret" we have
|
|
ret
|
|
|
|
; copy (HL) into DE, then exchange the two, utilising the optimised HL instructions.
|
|
; ld must be done little endian, so least significant byte first.
|
|
intoHL:
|
|
push de
|
|
ld e, (hl)
|
|
inc hl
|
|
ld d, (hl)
|
|
ex de, hl
|
|
pop de
|
|
ret
|
|
|
|
intoDE:
|
|
ex de, hl
|
|
call intoHL
|
|
ex de, hl ; de preserved by intoHL, so no push/pop needed
|
|
ret
|
|
|
|
intoIX:
|
|
push ix
|
|
ex (sp), hl ;swap hl with ix, on the stack
|
|
call intoHL
|
|
ex (sp), hl ;restore hl from stack
|
|
pop ix
|
|
ret
|
|
|
|
; add the value of A into HL
|
|
addHL:
|
|
push af
|
|
add a, l
|
|
jr nc, .end ; no carry? skip inc
|
|
inc h
|
|
.end:
|
|
ld l, a
|
|
pop af
|
|
ret
|
|
|
|
; subtract the value of A from HL
|
|
subHL:
|
|
push af
|
|
; To avoid having to swap L and A, we sub "backwards", that is, we add
|
|
; a NEGated value. This means that the carry flag is inverted
|
|
neg
|
|
add a, l
|
|
jr c, .end ; if carry, no carry. :)
|
|
dec h
|
|
.end:
|
|
ld l, a
|
|
pop af
|
|
ret
|
|
|
|
; Compare HL with DE and sets Z and C in the same way as a regular cp X where
|
|
; HL is A and DE is X.
|
|
cpHLDE:
|
|
push hl
|
|
or a ;reset carry flag
|
|
sbc hl, de ;There is no 'sub hl, de', so we must use sbc
|
|
pop hl
|
|
ret
|
|
|
|
; Write the contents of HL in (DE)
|
|
; de and hl are preserved, so no pushing/popping necessary
|
|
writeHLinDE:
|
|
ex de, hl
|
|
ld (hl), e
|
|
inc hl
|
|
ld (hl), d
|
|
dec hl
|
|
ex de, hl
|
|
ret
|
|
|
|
; Call the method (IX) is a pointer to. In other words, call intoIX before
|
|
; callIX
|
|
callIXI:
|
|
push ix
|
|
call intoIX
|
|
call callIX
|
|
pop ix
|
|
ret
|
|
|
|
; jump to the location pointed to by IX. This allows us to call IX instead of
|
|
; just jumping it. We use IX because we seldom use this for arguments.
|
|
callIX:
|
|
jp (ix)
|
|
|
|
callIY:
|
|
jp (iy)
|
|
|
|
; Ensures that Z is unset (more complicated than it sounds...)
|
|
unsetZ:
|
|
push bc
|
|
ld b, a
|
|
inc b
|
|
cp b
|
|
pop bc
|
|
ret
|
|
|
|
; *** STRINGS ***
|
|
|
|
; Fill B bytes at (HL) with A
|
|
fill:
|
|
push bc
|
|
push hl
|
|
.loop:
|
|
ld (hl), a
|
|
inc hl
|
|
djnz .loop
|
|
pop hl
|
|
pop bc
|
|
ret
|
|
|
|
; Increase HL until the memory address it points to is equal to A for a maximum
|
|
; of 0xff bytes. Returns the new HL value as well as the number of bytes
|
|
; iterated in A.
|
|
; If a null char is encountered before we find A, processing is stopped in the
|
|
; same way as if we found our char (so, we look for A *or* 0)
|
|
; Set Z if the character is found. Unsets it if not
|
|
findchar:
|
|
push bc
|
|
ld c, a ; let's use C as our cp target
|
|
ld a, 0xff
|
|
ld b, a
|
|
|
|
.loop: ld a, (hl)
|
|
cp c
|
|
jr z, .match
|
|
or a ; cp 0
|
|
jr z, .nomatch
|
|
inc hl
|
|
djnz .loop
|
|
.nomatch:
|
|
call unsetZ
|
|
jr .end
|
|
.match:
|
|
; We ran 0xff-B loops. That's the result that goes in A.
|
|
ld a, 0xff
|
|
sub b
|
|
cp a ; ensure Z
|
|
.end:
|
|
pop bc
|
|
ret
|
|
|
|
; Format the lower nibble of A into a hex char and stores the result in A.
|
|
fmtHex:
|
|
and 0xf
|
|
cp 10
|
|
jr nc, .alpha ; if >= 10, we have alpha
|
|
add a, '0'
|
|
ret
|
|
.alpha:
|
|
add a, 'A'-10
|
|
ret
|
|
|
|
; Formats value in A into a string hex pair. Stores it in the memory location
|
|
; that HL points to. Does *not* add a null char at the end.
|
|
fmtHexPair:
|
|
push af
|
|
|
|
; let's start with the rightmost char
|
|
inc hl
|
|
call fmtHex
|
|
ld (hl), a
|
|
|
|
; and now with the leftmost
|
|
dec hl
|
|
pop af
|
|
push af
|
|
and 0xf0
|
|
rra \ rra \ rra \ rra
|
|
call fmtHex
|
|
ld (hl), a
|
|
|
|
pop af
|
|
ret
|
|
|
|
; Compares strings pointed to by HL and DE up to A count of characters. If
|
|
; equal, Z is set. If not equal, Z is reset.
|
|
strncmp:
|
|
push bc
|
|
push hl
|
|
push de
|
|
|
|
ld b, a
|
|
.loop:
|
|
ld a, (de)
|
|
cp (hl)
|
|
jr nz, .end ; not equal? break early. NZ is carried out
|
|
; to the called
|
|
cp 0 ; If our chars are null, stop the cmp
|
|
jr z, .end ; The positive result will be carried to the
|
|
; caller
|
|
inc hl
|
|
inc de
|
|
djnz .loop
|
|
; We went through all chars with success, but our current Z flag is
|
|
; unset because of the cp 0. Let's do a dummy CP to set the Z flag.
|
|
cp a
|
|
|
|
.end:
|
|
pop de
|
|
pop hl
|
|
pop bc
|
|
; Because we don't call anything else than CP that modify the Z flag,
|
|
; our Z value will be that of the last cp (reset if we broke the loop
|
|
; early, set otherwise)
|
|
ret
|
|
|
|
; Transforms the character in A, if it's in the a-z range, into its upcase
|
|
; version.
|
|
upcase:
|
|
cp 'a'
|
|
ret c ; A < 'a'. nothing to do
|
|
cp 'z'+1
|
|
ret nc ; A >= 'z'+1. nothing to do
|
|
; 'a' - 'A' == 0x20
|
|
sub 0x20
|
|
ret
|
|
|